lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (2753B)


      1 +++
      2 title = 'Partial orders'
      3 +++
      4 # Partial orders
      5 partial order on V: relation R of type V × V. satisfies reflexivity, anti-symmetry, transitivity
      6 
      7 example: relation ≤ is partial order on N
      8 
      9 - ∀n: n ≤ n (reflexivity)
     10 - ∀m, n: m≤n ∧ n≤m ➝ m = n (anti-symmetry)
     11 - ∀k, m, n: k≤m ∧ m≤n ➝ k≤n (transitivity)
     12 
     13 example: the relation ⊆ is partial order on P(V)
     14 
     15 - ∀A: A ⊆ A (reflexivity)
     16 - ∀A,B: A ⊆ B ∧ A ➝ A = B (anti-symmetry)
     17 - ∀A,B,C: A ⊆ B ∧ B ⊆ C ➝ A ⊆ C (transitivity)
     18 
     19 ## linear ordering relations
     20 partial order R on set V, then:
     21 
     22 - x, y ∈ V are _comparable_ if x R y or y R x
     23 - R is _linear/total order_ if all x,y ∈ V are comparable
     24 
     25 e.g. relation ≤ on N: for all n,m in N — n ≤ m or m ≤ n — _total_
     26 
     27 e.g. relation ⊆ on P({1,2}): {1} is not a subset of {2}, {2} is not a subset of {1} — _not total_
     28 
     29 ## strict partial ordering relations
     30 
     31 if partial order R on set V, then strict partial order S corresponding to R is defined by
     32 
     33 x S y ⟷ x R y and x ≠ y
     34 
     35 a strict partial order is irreflexive, anti-symmetric, transitive
     36 
     37 ## Hasse diagrams
     38 apparently a partial ordering relation is complicated as fuck:
     39 
     40 ![screenshot.png](2eda764900f11b3ddad4f1040903a76e.png)
     41 
     42 so get rid of some arrows and make a Hasse diagram — omit reflexivity and transitivity
     43 
     44 the arrows create chains that split and merge, elements in the same chain are comparable
     45 
     46 ![screenshot.png](c05050e0c42af9ad30fd4c47bd1ee899.png)
     47 
     48 Algorithm:
     49 1. For all x ∈ V — Gx := {y : y ≠ x and x R y}
     50 2. For all x ∈ V — Hx := Gx \ {z : z ∈ Gy for a y ∈ Gx}
     51 3. For all x ∈ V — draw and arrow from x to every y ∈ Hx
     52 
     53 example:
     54 ![screenshot.png](5e55945abe6bf157aa776b75860a0963.png)
     55 
     56 ## Cartesian order on A × B
     57 \<a1, b1\> ≤ \<a2, b2\> ⟷ a1 ≤A a2 and b1 ≤B b2
     58 
     59 ordered by points, if both are smaller
     60 
     61 cartesian order on A × B is a partial order
     62 
     63 ![screenshot.png](dcc75437f5e4e97d00b4697b6bdc2468.png)
     64 
     65 ## Lexicographic order on A × B
     66 \<a1, b1\> ≤ \<a2, b2\> ⟷ (a1 \<A a2) ∨ (a1 = a2 ∧ b1 ≤B b2)
     67 
     68 like in a dictionary
     69 
     70 lexicographic order on A× B is a partial order, total if ≤A on A and ≤B on B are total
     71 
     72 ![screenshot.png](3303376e4e02317b96c25be114c24644.png)
     73 
     74 ## Minimal and maximal elements
     75 (V, ≤) is a partially ordered set, A ⊆ V, m ∈ A
     76 
     77 m is:
     78 
     79 - largest element of A — if ∀a ∈ A : a ≤ m
     80 - smallest element of A — if ∀a ∈ A : m ≤ a
     81 - maximal element of A — if ∀a ∈ A : (M ≤ a ➝ m = a) — no outgoing arrows on Hasse diagram
     82 - minimal element of A — if ∀a ∈ A : (a ≤ m ➝ a = m) — no incoming arrows on Hasse diagram
     83 
     84 Every maximum of A is a maximal element of A.
     85 If A has a maximum, it is the only maximal element.